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A B S T R A C T

Although the use of mercury in the form of cinnabar (HgS) by the ancient Maya has been widely documented, 
there are few datasets available to understand potential exposure to mercury from ancient Maya reservoirs. This 
study analyzed the chemical composition of stratigraphically excavated dried sediments from 3 ancient water 
reservoirs located in different zones and social contexts at the site of Ucanal, Guatemala, to determine how 
potential contamination of water reservoirs varied through space and time. High levels of mercury, relative to 
natural concentrations in soils, were identified throughout the complete temporal sequence and were omni
present in all three water reservoirs, indicating that mercury contamination may have affected both elite and 
non-elite sectors of the population. Average total mercury concentrations in the reservoirs’ sediments were above 
1 μg/g, the toxic effect threshold above which freshwater ecosystem sediments are deemed to be heavily 
polluted. A sharp increase in mercury was recorded for the Terminal Classic period, when the city reached its 
apogee, with average concentrations of 3.08 μg/g for Aguada 2, 11.88 μg/g for Aguada 3 and 3.17 μg/g for 
Piscina 2. Non-reservoir soil samples also show mercury contamination throughout the city core, a situation 
which would have led to the accumulation of mercury in water reservoirs through its mobilization within the 
various drainage areas.

1. Introduction

One of the key components to the health of any community, past or 
present, is the access to clean water sources and environments. Previous 
geochemical studies of ancient Maya contexts reveal that a range of 
physical, chemical and biological factors could have affected water 
sources in the past (Cook et al. 2006, 2022; Lentz et al. 2020; Némery 
et al. 2016; Tankersley et al. 2020; Waters et al. 2021). Contamination of 
water by algal blooms or cyanobacteria in antiquity would have been 
visible to the naked eye and could have triggered corrective actions and/ 
or avoidance behaviors by the Maya, but chemical contamination would 
have been invisible and was therefore potentially more insidious as it 
could have remained unnoticed for extended periods, leading to po
tential harmful health effects.

Although the ancient Maya are known to have had access to 
elemental mercury, the most common use of mercury was in its form as 
cinnabar (mercury sulfide: HgS) (Cook et al. 2022; Couoh 2015; Lentz 
et al. 2020; Pendergast 1982; Quintana et al. 2015; Vandenabeele et al. 
2005). Cinnabar was used throughout the ancient Maya world from the 

early Preclassic to the Postclassic periods in burial rituals (Cervini-Silva 
et al. 2013, 2018), employed as pigments used to paint buildings and as 
decorative coloring for luxury ceramics, engraved bone objects, carved 
stone ornaments and figurines, and as ritual offerings in themselves 
(Miller 2019:162,192; Rice 2015:160; Sharer et al. 2006:232,349) 
(Fig. 1). It is believed that the Maya used this inorganic substance due to 
its intense red color associated with blood and therefore to death and 
rebirth, an important part of Maya cosmology (Coe and Houston 2015; 
Miller 2019; Miller and Taube 1993). It differs from other red mineral 
pigments, such as those deriving from iron oxides, in its purplish shades 
of red (Houston 2009).

Despite the extensive evidence for the use of mercury-based mate
rials among Maya peoples, few studies have addressed the potentially 
toxic health effects such materials may have posed through the mea
surement of mercury concentrations in sediments from ancient Maya 
cities (Cook et al. 2022; Lentz et al. 2020). Exposure to mercury can 
occur through inhalation, skin contact or by ingestion of contaminated 
food, soils, or water (ATSDR 2022). Mercury consensus-based sediment 
quality guidelines for fresh water ecosystems have been published by 
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MacDonald et al. (2000), and initial chemical research on sediment 
samples from sites throughout the Maya Lowlands suggest that mercury 
levels were quite high, and in some cases, exceeded the toxic effect 
threshold (TET) of 1 μg g− 1, the level above which sediments are deemed 
to be heavily polluted (Cook et al. 2022). Of particular significance are 
the samples from three water reservoirs at Tikal, in which some samples 
from the Late and Terminal Classic periods possessed extremely high Hg 
concentrations exceeding ten times the TET (Lentz et al. 2020). These 
concentrations are too high to have accumulated naturally, such as 
through volcanic eruptions. Several studies have reported mercury 
concentrations from stratovolcano eruptions, although these concen
trations were in the low ng/g range (Battistel et al. 2018; Kotra et al. 
1983; Kushner et al. 2023:8).

This study expands our understanding of anthropomorphic mercury 
contamination through the chemical analysis of dried sediments from 
three water reservoirs located in the ancient Maya city of Ucanal, Petén, 
Guatemala. It investigates the potential exposure of mercury in different 
sectors of the city through the sampling of three reservoirs with water 
catchments from elite residential, middle-and low-status residential, and 
a mixed zone of public ceremonial and residential buildings of multiple 
statuses as well as comparative sampling of non-reservoir contexts. It 
also assesses the changes in mercury concentrations over the course of 
the settlement and political history of the site through the systematic 
stratigraphic sampling of the reservoirs and the chronological dating of 
these contexts through a combination of ceramic and AMS radiocarbon 
dating.

2. Geological and archaeological context

2.1. Mercury geochemistry

Mercury is a natural component of soils. Worldwide, the average 
total mercury concentrations in pristine soils are in the order of 0.08 μg 
g− 1 (ATSDR 2022; Gonzalez-Raymat et al. 2017), but modern contam
inated soils impacted by anthropic activities can reach concentrations as 
high as hundreds of μg g− 1 (Kulikova et al. 2019). Its natural biogeo
chemical cycle is characterized by the degassing of the element from 
soils or surfaces, its deposition to soils or water bodies and its adsorption 
/absorption to humic particulate matter (ATSDR 2022; Bank 2012; 

Canada Environment and Climate Change Canada 2016; Hauser-Davis 
et al. 2023). In particular, the mining and/or the concentrated use of 
mercury from cinnabar has the potential to contaminate the surrounding 
environments either through weathering, direct inputs and/or run-off. 
Once introduced into the environment, it can gradually accumulate in 
soils and sediments found in natural or human-made cavities such as 
water reservoirs. Mercury entering Ucanal’s environment would have 
been mobilized with the potential to accumulate in water pools associ
ated to various drainage areas of the city.

Mercury speciation determines its original fate and pathway into the 
environment (Bank 2012; Canada Environment and Climate Change 
Canada 2016; Hauser-Davis et al. 2023). The redox chemistry of mer
cury at the interface of air and surfaces plays an important role in the 
deposition and evasion processes of this chemical. In freshwater envi
ronments, such as ancient water reservoirs, photoreduction of Hg2+ to 
Hg0 (dissolved gaseous mercury) can favor evasion (Ferrara et al. 2003; 
Liu et al. 2012) but mercury reduction and oxidation in water systems 
would have happened simultaneously and at very similar rates with 
equilibrium potentially reached rapidly (Whalin and Mason 2006). 
Ancient water surfaces were likely oxidizing environments while the 
accumulating sediments were probably reducing. Therefore, in water 
and/or soils, mercury has the potential to evade or to combine with 
various ions and the final form in which it exists ultimately depends on 
the singular pathway it has followed. Since human-made reservoirs are 
very shallow environments relative to lakes, there is a low potential for 
methylation of mercury in the hypolimnion of those structures (Noh 
et al. 2018; Suchanek et al. 2008). Total mercury in accumulated sedi
ments (Σ Hg elemental + Hg inorg + Hg org) is therefore a good indicator 
of direct input and/or supernatant water contamination by this element 
(Kocman et al. 2011).

Dill (2010) reported that cinnabar, as a hydrothermal mineral, could 
be associated with three possible geologic settings: a) Magmatic (asso
ciated to intrusions) zone of subduction and volcanic arcs, b) structure 
bound (associated with faults) due to the metamorphism of sedimentary 
and volcanic sequences following fault development, and c) sedimen
tary, when mercury rich hydrothermal fluids mineralize sediments and 
form mercury deposits. A few cinnabar deposits are documented in 
Mexico (Ávila et al. 2014; Cook et al. 2022; Gallagher and Perez Siliceo 
1948; Martínez-Trinidad et al. 2013), while Pendergast (1982:533–534)

Fig. 1. Cinnabar found on artifacts from Ucanal, Guatemala: (a) crushed cinnabar pigment on the interior of a utilitarian ceramic vessel (Cambio Unslipped type) and 
likely as a receptacle for pigment preparation, it was recovered intermixed with materials from a Late Classic bone tool production workshop in elite residential 
Group J (UCA1B-12-8-1322); (b) jade ornament (UC-PV-042) from a royal burial deposit, Burial 20-1 (photographs by C. Halperin).
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indicated that the ancient Maya potentially collected cinnabar from 
Early Cretaceous formations near Lake Atitlán (see also Rytuba 2003) 
and from Late Cretaceous formations in western Honduras (see also 
Gorokhovich et al. 2020). There is no known natural cinnabar deposit in 
the Petén, Guatemala, nor is its geology conductive to such deposits. As 
such, it is possible that cinnabar found in Petén was imported through 
trade from either of these potential source locations.

Volcanic eruptions are common in Central America, and dry and wet 
deposition of natural non-anthropogenic mercury can affect the local 
accumulation of mercury, although these often occur at relatively low 
levels. Concentrations of mercury in volcanic ash, however, can vary 
significantly based on the specific volcano, the characteristics of the 
eruption, and distance from the eruption. Kushner et al. (2023) reported 
on volcanic ash mercury content from the eruptions of 3 andesitic 
stratovolcanoes: Mount Spurr with an average Hg concentration 
measured at 77.6 ng g− 1 with samples collected between 5 and 378 km; 
Augustine Volcano ash with samples collected at a distance of 1 to 85 

km, which had a mean Hg concentration of 7.2 ng g− 1; and Redoubt 
Volcano with samples collected between 3 to 333 km with an average Hg 
concentration of 22.8 ng g− 1. They also report on 12 other volcanos. All 
Hg ashes concentrations were in the ng g− 1 range with the majority at 
10 ng g− 1 or lower (Kushner et al. 2023:8). Measurements of Hg directly 
in the plume of the 1982 eruption of another andesitic stratovolcano, El 
Chichón, Mexico have been documented to be in the ppt range (Kotra 
et al. 1983). Ashes of this particular event did not reach Ucanal 
(Espíndola et al. 2000:91), and plume Hg concentrations were not 
indicative of potential high dry/wet Hg deposition in the greater Maya 
Lowlands.

Ucanal is in the southern Petén region of Guatemala, which is 
characterized by a series of rivers that drain from the Highland regions 
from the south and southeast. The climate of this region is a mix of Aw 
and Am Köppen climate classifications with dry and wet seasons along 
with tropical monsoons (Christopherson 2009; Folan 1983; Wahl et al. 
2007). Over the long term, the area can see wide interannual 

Fig. 2. Map of part of the city of Ucanal showing the locations of Aguadas 2,3 and Piscina 2, and location of background test samples collected around the city core.
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fluctuations in precipitation (Dunning et al. 1998; Gunn et al. 2002) and 
ensuring access to water in both adequate quality and quantity was 
crucial to Maya society.

2.2. Archaeology

The archaeological site of Ucanal is located along the Mopan River 
which originates from the Maya mountains via the Vaca Plateau (Seefeld 
2018). Since the river is not known to dry up during the annual dry 
season, inhabitants of the site would have had regular access to water. 
Nonetheless, Pre-Columbian peoples regularly constructed water reser
voirs, drainage canals, dams, terraces, and other features to more 
effectively access and manage water resources (Dunning et al. 1999; 
Lucero 2002; Lucero et al. 2011; Scarborough 1998; Scarborough et al. 
2012), even if they were located close to rivers, and the site of Ucanal 
was no exception. Part of the water infrastructure system at the site of 
Ucanal included large, monumental-scale reservoirs, smaller reservoirs 
or water collection zones, and large-scale open-air canals, which were 
integrated with public plazas, roads, and civic-ceremonial buildings to 
drain to the Mopan River to prevent flooding and erosion in residential 
areas of the ancient city (Halperin et al. 2019).

Investigations of Ucanal’s water infrastructure systems have been 
undertaken by the Proyecto Arqueológico Ucanal (PAU), directed by 
Christina Halperin of the Université de Montréal and Guatemalan ar
chaeologists, Lic. Jose Luis Garrido (2014–2022), and Lic. Carmen 
Ramos Hérnandez (2023-present). Excavations of reservoirs to date 
have targeted a large, monumental reservoir, Aguada 2, a small resi
dential reservoir, Aguada 3, and a water reservoir integrated into a 
larger drainage canal, Piscina 2 of Canal 1 (Fig. 2). Aguada 2 is located at 
one of the highest elevations of the site and was surrounded primarily by 
large residential groups interpreted to have been occupied by the city’s 
elite. It had an estimated holding volume of 2.6x106 L and had a water 
catchment drainage area of 10,919 m2 (Halperin et al., 2023) (Fig. 3). 
Although large in size for the site, Aguada 2 is smaller than those at other 
sites, such as Tikal, whose Temple, Palace and Corriental reservoirs held 
respectively 27, 74 and 57×106 L of water that supported a city located 
at a significant distance from any river or lake (Scarborough et al. 2012). 

Aguada 3 is located near a grouping of mid- and small-sized residential 
groups interpreted to have been of middle status or non-elite status 
(Halperin et al. 2023a). It had a holding volume estimated at 450 x103 L 
associated with a drainage area of 6,057 m2. Piscina 2 (P2C1) is located 
at the lower ¼ mark of Canal 1 before its drainage into the Mopan River. 
The pool serves as a water attenuation tank to slow the flow of water and 
erosion during the rainy season and as such, it was a dynamic water 
retention zone with a large drainage area of 158,805 m2 (Gauthier and 
Flynn-Arajdal 2024). It was likely accessed for water collection by 
lower-status non-elite inhabitants since small-sized residences sur
rounded it. Its water catchment zone, however, includes public cere
monial plaza spaces as well as elite and non-elite residential sectors.

Archaeological research at the site of Ucanal by the Proyecto Atlas 
Arqueológico de Guatemala, directed by Juan Pedro Laporte, 
(1998–2000) and the PAU reveals that it was occupied from the Middle 
Preclassic to Postclassic periods (ca. 800 BCE – 1521 CE) (Halperin et al. 
2021; Halperin et al. 2024b; Laporte and Mejía 2002). Although it was 
likely only a small village during the Middle Preclassic period, it became 
an important ceremonial center by the Late Preclassic period (ca. 300 
BCE – 300 CE) when many of the civic ceremonial zones of the site were 
built-up for the first time and residential occupation is well-documented. 
The height of its occupation was during the Late Classic (ca. 600–810 
CE) and Terminal Classic periods (ca. 810–950/1000 CE), with a likely 
small population growth between the Late Classic and Terminal Classic 
periods. Mapping has revealed that the site was quite extensive at its 
apogee, with a monumental and residential core of at least 7.5 km2 and a 
wider periphery that extended at least to a zone of 26 km2 straddling 
both sides of the Mopan River. The public monumental zones include 
over 12 major public ceremonial complexes, three of which have ball
courts (Halperin et al. 2019, 2021). Based on the number of identified 
structures (Canuto et al. 2018), the site population is preliminarily 
estimated to have been between 8,000 and 11,000 people at its peak, 
although these numbers would be larger with the inclusion of outlying 
settlement zones.

For much of the Classic period, Ucanal, known as K’anwitznal in 
glyphic texts, was subordinate to other larger polities, including Tikal, 
Naranjo, and Caracol (Halperin et al. 2020; Martin 2020). During the 

Fig. 3. Map of Aguadas 2, 3 (left) and Piscina 2 (right) with their respective water catchment zones (in blue).
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Terminal Classic period, however, the K’anwitznal polity underwent a 
large-scale renewal: forging alliances with new political entities 
throughout the Maya Lowlands, undertaking major civic-ceremonial 
building campaigns in the city’s site core, and erecting new monu
ments throughout the 9th century (Halperin and Garrido 2020; Halperin 
and Martin 2020). Excavations of three of the city’s canals indicate that 
these water drainage systems were built at the beginning of the Terminal 
Classic period, helping safeguard residential populations from flooding 
during monsoons or annual rainy seasons (Halperin et al. 2019). Pop
ulation, however, diminished significantly during the Postclassic period 
with no evidence of any major Postclassic building projects, although all 
excavated groups contained some Postclassic pottery even if in very 
small amounts (Halperin et al. 2021; Perea 2023).

3. Materials and methods

3.1. Dried sediments sampling

Aguadas 2 and 3 were excavated in 2022 and P2C1 in 2023. Dried 
sediments (soil samples) were stratigraphically excavated from exca
vation units located at the center of each reservoir. Excavations followed 
10 cm level changes until bedrock. After reaching bedrock, dried sedi
ment samples were taken from a cleaned side of the excavation wall 
every 10 cm using a stainless steel spatula, working from the bottom 
layer to the top humic layer of the reservoirs, following current envi
ronmental research practices (Keenan et al. 2021, 2022; Köster et al. 
2005; Kulikova et al. 2019; Lentz et al. 2020). With a depth of 3.5 m, 
Aguada 2 recovered samples from 35 distinct levels. Aguada 3 had 12 
levels (1.2 m deep), and P2C1 (1.5 m deep) provided 15 levels of dried 
sediments. To identify potential source zones of mercury contamination 
in the city and to determine surrounding levels of mercury, 5 extra soil 
samples were collected: two from excavations in the public, ceremonial 
sector of the city, two from surface collections (10 cm below the ground 
surface) of residential zones, and one from surface collection in a zone 
slightly away from architecture just north of the Mopan River (Fig. 2). 
Collected dried sediments and carbon (charcoal) samples were placed in 
sterile Whirl Pak bags, kept at room temperature, and transported to the 
Earth and Planetary Sciences laboratory at McGill University in Canada 
at the end of both field seasons. A duplicate of all the samples was kept at 
the Proyecto Arqueológico Ucanal (PAU) laboratory in Flores, 
Guatemala, and some samples were split for Quality Assurance and 
Quality Control (QA/QC) purposes. Upon reception in Canada the 
samples were freeze dried to remove any water content, weighed, 
ground and sieved (USA STD Testing Sieve No.8, 2.36 mm). Both coarse 
and fine fractions were thereafter kept in a − 20 ◦C freezer.

Our study followed standard archaeological procedures whereby 
samples were not handled under anoxic conditions (Cook et al. 2022; 
Lentz et al. 2020; Turner et al. 2021; Wells et al. 2000). The dried sed
iments analyzed were therefore exposed to oxygen while being manip
ulated. Furthermore, given that the reservoir sediments probably were 
not covered in water for hundreds of years, they may have experienced 
oxic conditions long before sampling. The lack of anoxic sampling 
methods is common to published archaeological studies covering the 
presence of mercury in ancient Maya sites (Cook et al. 2022; Lentz et al. 
2020; Turner et al. 2021; Wells et al. 2000). It is important to keep in 
mind that redox chemistry occurred throughout the history of sediment 
accumulation in the 3 reservoirs studied which cover centuries and, in 
the case of Aguada 2, more than a thousand years. Measuring total 
mercury in this case was the only means of quantifying the end result of 
Hg accumulation and evasion, even if this may underestimate the total 
Hg present at the time of deposition.

3.2. TC, TOC, and pH

We also measured other geochemical parameters, including total 
carbon (TC), total organic carbon (TOC), and pH, which will be analyzed 

in detail in a forthcoming article. Here we present a summary of the 
results that support our analysis of the Hg measurements. Among those, 
soil pH was measured with an Oakton pH Meter (probe MA918) cali
brated with pH 4, 7 and 10 standard solutions. Ten grams of samples 
were added to 25 ml of 0.01 M CaCl2 solution and mixed for 30 min 
before measurement. TC and TOC were measured at the Geotop 
Research Center on Earth Dynamics Light Stable Isotope Geochemistry 
Laboratory in Montréal, Canada. Measurements were carried out by 
combustion and separation of elements using a Carlo Erba NC2500 gas 
chromatograph coupled with a thermal conductivity detector. Consid
ering the high inorganic carbon levels found throughout the sediment 
columns, sample aliquots for TOC measurements were first treated with 
a 1 N HCl solution and centrifuged at 4000 rpm for 20 min to remove the 
supernatant liquid. This process was repeated until all excess CaCO3 was 
removed as indicated by the absence of CO2 gas. It was then brought to 
neutral pH with milli-Q water and freeze-dried (Labconco Freezone 12) 
prior to measurement.

3.3. Dating of the reservoirs

AMS radiocarbon analyses were conducted at the University of 
Ottawa in Canada and complemented by ceramic analyses performed at 
the PAU lab in Flores, Guatemala. For radiocarbon measurements, 
sample pretreatment techniques, processing and definitions of media 
codes can be found in (Crann et al. 2017) and (Murseli et al. 2019). 
Calibration was performed using OxCal v4.4 (Ramsey 2009). Calibrated 
results are given as a range (or ranges) with associated probabilities 
(Millard 2014). Ceramic chronologies were established by PAU 
personnel, led by Miriam Salas, based on regional ceramic type-variety 
classifications and their ceramic complexes (Gifford 1976; Laporte 2007; 
Salas et al. 2018). Ceramics were found in all levels of the three reser
voirs, providing 100 % chronological coverage (Appendix A).

3.4. Mercury measurements

Total mercury measurements were conducted at the Université de 
Montréal Biological Sciences laboratory in Canada using a Direct Mer
cury Analyzer model DMA-80 EVO with thermal decomposition fol
lowed by catalytic conversion, amalgamation, and atomic absorption 
detection. Combustion occurred at 650 ◦C under O2 for 90 s with 
granular catalyst to reduce mercury, and gold column for amalgamation. 
Absorbance was measured at 253.7 nm with 3 calibration curves (0–2 ng 
Hg; 2–25 ng Hg and 25–250 ng Hg). The detection limit of the technique 
was 0.01 ng g− 1. Typical sample mass introduced in the analyzer was 
between 15 and 40 mg of dried sediments. One blank and one known 
standard were run every 10 samples with auto blank cycles being 
introduced in the sample run to clean the system following the reading 
of high mercury concentrations.

3.5. Global data set statistical errors

A total of 62 levels of dried sediments were collected from the 3 
reservoirs, of which 8 (13 %) were collected in triplicates for QA/QC: 4 
for Aguada 2 (35 levels), and 2 for both Aguada 3 (12 levels) and P2C1 
(15 levels). Samples from these levels were split and triplicates were 
subjected to parallel manipulations and analyses. The global error on 
our data set was evaluated using three different approaches. First, the 
standard error was calculated for each QA/QC samples, the average of 
those errors was computed and simply applied to our data set. This 
methodology led to a global error for our data set of ±8.3 %. This 
approach likely underestimated the true error of our data set since the 
uncertainty for the QA/QC samples which were measured in triplicates 
is lower than the uncertainty for the remaining samples measured only 
once. An alternate and more conservative error determination is to 
establish the global error by dividing the average standard deviation 
(SD) for our QA/QC samples by the average value of all concentrations 
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in our data set as proposed by Polissar and D’Andrea (2014:152,155). 
This approach led to a global error of ±14.3 %. Finally, we calculated 
the average variation coefficient for our QA/QC samples and extrapo
lated it to our data set as discussed by Reed et al. (Reed et al. 
2002:1238). This approach led to a very similar global error of ±14.5 %. 
For this study, considering the size of our data set and the size of our QA/ 
QC, we opted for the most conservative approach of error determination 
and established our global error to be at ±14.5 %. Complete data from 
QA/QC samples and subsequent global error calculations tables can be 
found in Appendix B.

4. Results

All levels of dried sediments in the 3 reservoirs studied as well as 
samples collected in the city core but outside the drainage areas of our 
reservoirs registered the presence of mercury. Various benchmarks 
allow us to partially qualify our results. They include:

Benchmark 1, the reported worldwide pristine soil mercury con
centration average which sits at 0.08 μg g− 1 (ATSDR 2022; Gonzalez- 
Raymat et al. 2017);

Benchmark 2, the Canadian environmental quality guidelines for 
mercury in freshwater sediments for the protection of aquatic life of 
0.14 μg g− 1, the level above which statistically probable deleterious 
effects can occur (Gaudet et al. 1995);

Benchmark 3, the toxic effect threshold (TET) above which fresh
water ecosystems sediments are deemed to be heavily polluted which is 

reported to be at 1.0 μg g− 1, the level above which adverse effects on 
sediments dwelling organisms are recorded (MacDonald et al. 2000) 
and;

Benchmark 4, the Canadian soils contamination guideline for agri
cultural and residential land use of 6.6 μg g− 1 (CCME 2007; Environ
ment Canada 2010).

Mercury concentration distribution with depth tables for Aguadas 2, 
3, and P2C1 as well as total mercury results from soil samples collected 
within the city core outside the drainage areas of our reservoirs can be 
found in Appendix C. For these tables, the average measured concen
trations of the QA/QC triplicates were attributed to the corresponding 
levels. All dried sediment samples collected in the 3 reservoirs had very 
high calcium carbonate content. Total carbon was in the 9–11 % range 
while total organic carbon readings were typically in the 1–2 % range 
except those from the humic zone (top 30 cm) which were typically in 
the 4–8 % range. Most samples had a coarse fraction (> 2.36 mm) in the 
20–30 % range with some exceptions which will be discussed below. pH 
readings were between 7.3 and 7.9 indicative of a slightly alkaline 
environment regardless of reservoirs and depth.

4.1. Aguada 2

For Aguada 2, all 35 levels exceeded Benchmark 2, and 12 levels 
exceeded Benchmark 3 including all levels dating to the Terminal Classic 
Period (Fig. 4). While Middle Preclassic ceramics were found in the 
lowest levels of Aguada 2, it is likely that the construction of this aguada 

Fig. 4. Aguada 2 total mercury concentrations profile by depth with ceramic chronologies (color blocks) and AMS radiocarbon dating (Appendices B and C).
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first began in earnest during the Late Preclassic period according to the 
radiocarbon dating. Middle Preclassic ceramic material mixed with later 
ceramics were deposited through erosion at the bottom of the Aguada 
along with soils from the Late Preclassic. Spanning from at least the Late 
Preclassic to the Terminal Classic periods, Aguada 2 has the longest 
chronology of the 3 reservoirs. Although the 3.5 m sediment accumu
lation at the bottom of the reservoir is uninterrupted for ca.1000 years, 
we cannot exclude the possibility that the reservoir could have become 
dry from time to time during extended low precipitation periods. 
Regardless, we found no signs of sediment manipulations nor renovation 
efforts at the bottom of the reservoir after the Late Preclassic period 
(Cruz Gómez and Quezada 2023). Granulometry shows little fluctuation 
in the coarse fraction of our soil samples throughout the sedimentation 
sequence with an average of 23.0 % (SD of 6.5 (N = 35)) of the collected 
material larger than 2.36 mm. With the global error on our mercury 
readings being 14.5 %, we are limited in drawing broad conclusions 
about mercury concentrations fluctuations from dry sediment layers 
with the exclusion of the Terminal Classic associated levels, which 
represented a significant change in concentrations. The average total 
mercury concentrations detected from levels 6 to 35 in Aguada 2 was 
0.84 μg g− 1 with a standard deviation of 0.29 (N = 30). We found 
mercury concentrations falling outside SD variations in 5 levels all 
exceeding TET, 2 of which are in the Early Classic (levels 17 and 20: 1.55 
and 1.32 μg g− 1) and 3 at the bottom of the reservoir in layers associated 
with Late Preclassic soils (levels 32, 33 and 34: 1.37, 1.21, 1.35 μg g− 1), 
a time when Ucanal became an important ceremonial center. Excluding 
those readings which fall outside statistical fluctuations, concentrations 
remained relatively constant from the construction of the reservoir all 
the way to the Late Classic period. A sharp increase in mercury con
centrations (up by a factor of 360 %) is recorded in the Terminal Classic 
period when the average total mercury reached 3.02 μg g− 1.

4.2. Aguada 3

Aguada 3 is located near residential Group 151 occupied by non-elite 
inhabitants (Halperin, Chalifour, et al. 2024; Halperin et al. 2023). It sits 
150 m southeast of Aguada 2. For this reservoir, all but one of the 12 
levels exceeded Benchmark 2, 7 exceeded Benchmark 3, and 5 had levels 
exceeding Benchmark 4 (Fig. 5). At 1.2 m deep, Aguada 3 is a much 
shallower reservoir than Aguada 2. This reservoir appears to have been 
constructed during the end of the Late Classic period or beginning of the 
Terminal Classic period. Levels 7–8 comprised a compact construction 
fill and levels 9–12 comprised a compact sascab stratum (Halperin et al. 
2023b:135–136). Correspondingly, soil analysis of these lower levels 
was characterized by powdery cream-colored matrix containing large 
quantities of calcium carbonate powder mixed with 40–60 % coarse 
fraction composed of limestone. AMS radiocarbon dating of the compact 
sascab in level 11 corresponds to the Late Classic period, and Late Classic 
ceramics dominated levels 7–12 even though mixed with those of earlier 
periods. The average total mercury concentration for these lower levels 
was 0.36 μg g− 1. The upper 6 levels dated, based on ceramic analysis, to 
the Terminal Classic period and represented the accumulation of soil 
through erosion. The average mercury concentration associated with 
Terminal Classic levels was 11.88 μg g− 1 with a peak concentration of 
16.91  μg g− 1 at level 3, the highest concentration recorded in our study. 
As such, the average mercury concentration increased by more than 
3000 % between the Late and Terminal Classic periods.

4.3. Piscina 2 of Canal 1

For P2C1, all excavated levels exceeded Benchmark 2, and 11 
exceeded Benchmark 3 (Fig. 6). The larger canal system, including 
P2C1, was constructed at the beginning of the Terminal Classic period 
(Halperin et al. 2019), but the P2C1 reservoir itself may have been a 
zone of soil and water accumulation dating back to earlier periods. 
Although a homogenous and compact fill level was not identified, 

Fig. 5. Aguada 3 total mercury concentrations profile by depth with ceramic chronologies (color blocks) and AMS radiocarbon dating (Appendices B and C).
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evidence of the reservoir’s construction appears most evident in the 
lowest levels, levels 9–15, which contained ceramics of mixed time pe
riods (Gauthier and Flynn-Arajdal 2024). Levels 10–15 contained ce
ramics primarily dating to the Late Preclassic and Early Classic periods. 
The lack of levels with high concentrations of Late Classic ceramics is 
noteworthy since it formed a major occupation period at the site. 
Stratigraphic levels dating with Late Classic materials may have been 
partially removed to create the reservoir itself. The perturbation is also 
reflected in the inversion of AMS radiocarbon dating with a Late Pre
classic date at level 9 and a Late Classic to early Terminal Classic period 
date at level 10. A second line of evidence to that effect comes from the 
coarse fraction profile of this reservoir (Appendix C) which shows a 
marked contrast of levels 6 to 9 (coarse fraction at 18.9 % with SD of 3.4 
(N = 4)) compared with levels both above (coarse fraction at 57.0 % 
with SD of 9.7 (N = 5)) and lower (coarse fraction of 54.6 % with SD of 
7.6 (N = 6)) than this horizon. Terminal Classic ceramics were identified 
in levels 1–9, and an AMS date from level 3 corresponds to the Post
classic period. Like the other reservoirs, the heightened mercury con
centrations were from the Terminal Classic context or later (levels1-7) 
with average mercury recorded as 3.17 μg g− 1, 270 % higher than the 
average mercury concentration prior to this period which is 1.18 μg g− 1.

4.4. Background samples

The 4 samples collected in Terminal Classic soils within the city core 
but outside the drainage basins of the reservoirs also showed high levels 
of mercury (Appendix C). The highest concentration with 6.44 μg g-1of 
mercury (narrowly missing Benchmark 4) was from a ceremonial zone of 
the site (sample UCA20B-7-3-2074). It was excavated from plaza fill 
located directly in front of Stela 29 in sector H-10. Stela 29 was erected 
in the Terminal Classic period (Halperin and Martin 2020). The sample 
(UCA2F-19-3-2568) excavated at the edge of Ballcourt 1 in Plaza A was 

collected from a feasting midden context with large quantities of ce
ramics and contained 4.97 μg g− 1 of mercury. Samples (JT004, JT005) 
located within the city, but away from public ceremonial zones pre
sented somewhat lower concentrations of 3.02 and 3.78 μg g− 1. Finally, 
a sample (JT006) collected within the city, but in an area with no res
idential or ceremonial architecture, had a mercury concentration of 0.23 
μg g− 1. At 3 times Benchmark 1, we consider this sample to be repre
sentative of what could be the lowest mercury concentrations likely to 
be found within the site core of Ucanal.

4.5. Soil conditions as indicators for mercury evasion

There is little doubt that some Hg0 could have been lost during 
sediment deposition and diagenesis including drought events, as well as 
during sample collection and subsequent manipulations. Nonetheless, 
our analysis indicates that the soil at the site was not conducive to high 
mercury evasion. The pH measurements ranged from 7.3 to 7.9 
throughout all samples (Appendix C), indicative of a slightly alkaline 
context at the site in general and a lower mercury evasion than what 
would be expected under acidic pH environments (Takeno 
2005:115–117). As for the redox environment, the ancient water surface 
was an oxidizing environment while the accumulating sediments were 
likely reducing. Published data suggest that Hg0 evasion fluxes from 
soils vary with organic content (Gustin and Stamenkovic 2005). Total 
organic carbon was measured in the reservoirs and was typically in the 
1–2 % range except for the humic levels (top 30–40 cm) where it typi
cally reached 4–8 %. A study by Poulin et al (2016) demonstrated 
distinct temporal differences in mercury transformation and release 
dynamics between soil horizons where mercury bound to organic matter 
dominated at high Eh (oxidation conditions) and at pH 7–8, while Hg0 is 
to be expected at neutral to low Eh in lower horizons (in their case 
20–30 cm). Considering the recorded pH and based on Eh(V)-pH 

Fig. 6. Piscina 2 of Canal 1 mercury concentrations profile by depth with ceramic chronologies (color blocks) and AMS radiocarbon dating (Appendices B and C).
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speciation profiles for mercury (Takeno 2005:115–117), a reducing 
environment of about − 0.5 Eh(V) would have been required to generate 
Hg0.

5. Discussion

Mercury concentrations above Benchmark 3 were identified in all 
three reservoir contexts and all non-reservoir background urban con
texts at the site of Ucanal with the exception of a background (JT006) 
sample located away from residential and ceremonial architecture. 
Although we might expect to find higher concentrations of mercury in 
elite households or public ceremonial contexts due to the exotic and 
imported nature of cinnabar in Lowland Maya sites, both elite and non- 
elite urban residents of Ucanal either had access to mercury source 
materials or had the potential to be exposed to water with mercury 
mobilized through rain and erosion.

These findings are supported by some initial geochemical research in 
non-elite contexts elsewhere in Mesoamerica. For example, in a study at 
the village site of Cerén in El Salvador at the southernmost extent of the 
Classic Maya area, Parnell et al. (2002) recorded mercury concentra
tions between 3.58 and 10.14 μg g− 1 from midden (at various depths), 
agricultural fields, and from a ceremonially important household, 
Structure 10, where the highest concentrations were found. The authors 
associate these mercury concentrations with the use of cinnabar pig
ments in these contexts and to the disposal of craft-related garbage.

Similarly, despite the ubiquity of mercury at the site of Ucanal, 
relatively higher concentrations may have corresponded, in part, to 
particular types of activities and deposition patterns. Among the non- 
reservoir samples, higher concentrations were found in ceremonial 
plaza spaces where ceremonial use of cinnabar may have occurred 
through caching of cinnabar, mercury, or cinnabar-decorated objects. 
Such concentrations may also be associated with middens in general. For 
example, some of the highest concentrations of mercury from P2C1 were 
also found in levels with high concentrations of domestic midden ma
terials (levels 3–8) (Gauthier and Flynn-Arajdal 2024:148-149). Like
wise, some of the highest concentrations recorded at Ucanal derived 
from the stratigraphic levels of Aguada 3 where high concentrations of 
trash had accumulated, particularly in levels 3–5 (Halperin et al. 
2023b:134). Excavations of the two households surrounding the reser
voir revealed evidence of Terminal Classic period artisanal activities in 
the form of bone tool and greenstone production debris, some of which 
were also found in levels 3–5 in the reservoir itself (Halperin et al. 
2023b; Halperin et al. 2024a). A small paint pot lined with cinnabar- 
based pigment (UCA25B-3-4-3665) was also found in one of these 
households (Group 478). Thus, one possibility is that elevated concen
trations of mercury derived from artisanal activities in the nearby 
households and/or materials accumulated as part of trash deposits. In 
addition, a human burial, Burial 23-1, was excavated from an adjacent 
excavation unit (2 m away from the sample collection zone) in Aguada 3. 
Although it was not a formal burial and did not possess grave furniture 
or grave goods, the arms and legs of the male individual (in his 50s) were 
tightly hugging the body, suggesting that he was bundled with cloth or 
matting before having been slid into the reservoir (Halperin et al. 
2023:135, Fig.6.17). We cannot exclude the possibility that cinnabar 
could have been used as part of a ritual involving this burial, potentially 
increasing some of our mercury readings, even if no visible cinnabar was 
present upon excavations. Such funerary practices with cinnabar, 
however, are primarily recorded among royal tombs comprising the 
highest elite individuals of society (Fitzsimmons 2009:81–83) and not 
well-known among commoner populations. Nevertheless, the high 
concentrations of midden materials and the burial might suggest that 
Aguada 3 may have been an area to dispose of ‘grey’ or wastewater at 
some point during its life history.

The findings at Ucanal correspond to patterns found elsewhere in the 
Maya area in which the presence of mercury appears to be relatively 
widespread among ancient Maya sites but are found in particularly high 

concentrations in contexts related to artisanal activities, middens, or the 
locations of burials or offerings (Cook et al. 2006, 2022; Fulton et al. 
2017; Hutson and Terry 2006). For example, Turner et al. 
(2021:880,890) found evidence of mercury in midden-rich and artefact- 
rich anthrosol at the Classic Maya site of Marco Gonzalez, Belize. They 
registered total mercury concentrations spanning from 0.05μg  g− 1 

(background level) to a maximum of 1.33 μg g− 1 adjacent to Structure 
23 located at the center of the site. Their study found that mercury in 
surface soils was particularly linked to small surface depressions, use 
areas (structures) and vegetation (source of organic matter) as influ
encing factors on soil geochemistry. At the Late Classic site of Cancuén, 
Guatemala, a hot spot of 1 μg g− 1 total mercury was recorded in soils at 
the southern edge of a burial that contained two ceramic offerings which 
may have contained cinnabar (Cook et al. 2006:634,636). This study 
also included measurements in domestic living spaces where mercury 
concentrations of up to 0.21 μg g− 1 were detected; 5 times the local 
maximum pre-settlement mercury level estimated to be at 0.042 μg g− 1. 
Wells et al. (2000) recorded total mercury concentrations between 3 and 
4 μg g− 1 in sector U of Piedra Negras, Guatemala, with readings of 4.8 μg 
g− 1 in midden deposits near a dedicatory cache containing ceramic 
vessels, one of which was dusted with cinnabar (Wells et al. 2000:457). 
High mercury concentrations were also found in soil collected near a 
wall (Hg at 5.6 μg g− 1), which the authors propose was once painted 
with cinnabar-based pigment, and in a royal domestic midden (Hg at 2.7 
μg g− 1) containing a dense number of ceramics, that included decorated 
ceramics with hieroglyphic texts (Wells et al. 2000:455). These con
centrations contrast with mercury levels considered to occur naturally, 
such as those recorded from a lake sediment profile with total mercury 
concentrations at 0.11 μg g− 1 at Lake Petén Itza, Petén Guatemala, 
which may correlate with a known eruption of stratovolcano Aceta
nango in southern Guatemala at ca 2250 BP (Battistel et al. 2018).

Although few previous studies provide diachronic understandings of 
mercury compositions in soils, the results from both Lentz et al. (2020)’s 
study of reservoirs at Tikal and the Ucanal reservoir study reported here 
reveal significant increases in mercury at the end of the Classic period. 
The Tikal investigation recorded substantial increases at the very end of 
the Late Classic period with total mercury concentrations reaching 17 μg 
g− 1 in dried sediments dating to the transition between the Late Classic 
and the Terminal Classic periods. This reading is in line with the 
maximum concentration of 16.91 μg g− 1 detected in Terminal Classic 
dried sediments in Aguada 3 at Ucanal. All three reservoirs in Ucanal 
show a dramatic increase in total mercury contamination during the 
Terminal Classic period compared to earlier periods. This increase is 
evident in Aguada 2 with a 360 % increase compared to relatively stable 
mercury concentrations over a millennium before the Terminal Classic 
period. Aguada 3 shows an even more dramatic increase (at 3000 %), 
but this situation might be partially attributed to other factors, such as a 
burial or possible artisanal activities, as discussed earlier. Being a more 
dynamic environment with more rapid in and outflow of water, P2C1 
did not accumulate mercury through the same processes than the 
Aguadas 2 and 3. Contaminated soils were deposited within it, however, 
and it shows a 270 % increase in the Terminal Classic compared to 
average mercury concentration recorded in levels associated with earlier 
periods.

At Ucanal, the increase in sedimentary mercury concentrations cor
responded to a moment of political resurgence at the site. In addition, 
the Terminal Classic period was a moment of peak occupation at the site 
with 100 % of all tested residential groups occupied during this time 
(Halperin et al. 2021; Halperin and Ramos Hermandez 2024:Annex 2). 
At Tikal, however, increases in mercury contamination did not correlate 
with city growth and political power since Tikal experienced important 
moments of political consolidation and urban renewal during earlier 
periods, most notably during the Early Classic period after key moments 
of interaction with Teotihuacan and also during the beginning of the 
Late Classic period. In turn, both political influence and settlement 
population at the site diminished during the Terminal Classic period 
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(Sabloff 2003; Valdés and Fahsen 2004), when mercury levels were at 
their peak.

Another possibility for the increase in mercury levels at the two sites 
may be related to changing dynamics in trade relationships throughout 
various areas of the Maya Lowlands (Arnauld et al. 2017; Halperin et al. 
2020; Sharer et al. 2006). During the 9th century, after the decline of 
power in large political centers in the Southern Lowlands, Ucanal 
expanded its political influence to become a small regional power with 
an increase in long-distance trade in ground stone from the Highlands 
and wider trade and alliance networks in general as understood from 
ceramics, iconography and marine shells found at the site. While the 
increase in mercury levels in the Terminal Classic might be linked to a 
more active trading network involving Ucanal, we cannot assume in all 
cases, such as at Tikal, a direct correlation between higher mercury 
levels and political-economy prosperity.

This research highlights the possibility that ancient Maya peoples 
were living in anthropogenically altered environments that could pose 
adverse health effects. Numerous epidemiological studies indicate that 
inorganic mercury salts are linked to cardiovascular, hematological, 
immunological and reproductive effects (ATSDR 2022) as the mecha
nisms of toxicity of mercury compounds are diverse and include targets 
that are common to all cells, such as mitochondrial function, neuro
transmitter release and DNA methylation. More specifically, mercury 
exposure may lead to atherosclerosis, hypertension and insulin resis
tance (Tinkov et al. 2015). Exposure to mercury by Ucanal inhabitants 
could have come from several vectors of contamination such as water 
consumption, involuntary inhalation/ingestion while grinding or pro
cessing cinnabar or through directly handling cinnabar or other forms of 
mercury during rituals. The tolerable daily intake for inorganic mercury 
salts for oral ingestion exposure has recently been established at 2 μg 
kg− 1 per day (ATSDR 2022).

Evidence of mercury exposure via inhalation or consumption of 
contaminated food or liquids in bone tissues from human remains is 
difficult to establish. A study from Cervini-Silva et al (2021), which 
discusses the chemical transformations of mercury leading to its incor
poration into bone over millennia through various chemical processes 
involving [(Hg2)3(PO4)2] and HgO (attributed to the presence of oxygen- 
containing ligands such as P2O7

4-), reveals the complexity of dis
tinguishing between the accumulation of Hg into bone structures from 
environmental exposure over a life time and the detection of Hg in bone 
remains exposed to cinnabar through funerary practices. Mercury, 
however, can concentrate at interstitial positions of the bone matrix, can 
be found within the interior pores of bones (Cervini-Silva et al. 2021), or 
can be distributed in bone hydroxyapatite (Ávila et al. 2014). These 
recent findings will guide future research from the perspective of human 
remains at Ucanal.

6. Conclusion

Mercury contamination, likely through the direct use of cinnabar and 
its mobilization through soil and water, was pervasive at the ancient 
Maya city of Ucanal. Residents of the city appear to have been exposed 
to anthropogenic-derived mercury from at least the Late Preclassic to the 
Terminal Classic periods. All 3 tested reservoirs, however, show a 

dramatic increase in total mercury contamination during the Terminal 
Classic period compared to readings from earlier periods. These in
creases are consistent between the reservoirs despite different water 
catchment zones, social status associations, and hydrological capabil
ities of the reservoirs. Aguada 2 had the largest diachronic depth from at 
least the Late Preclassic to the Terminal Classic periods and encom
passed a drainage area that included elite residences. Aguada 3′s mer
cury contamination potentially came from artisanal or funerary 
activities associated with the low and middle-status residences sur
rounding it. Piscina 2 of Canal 1 was immediately surrounded by com
moner residences but had the largest drainage area encompassing 
ceremonial plaza spaces and both elite and commoner residences. 
Although Piscina 2 was a dynamic rather than stagnant reservoir, mer
cury accumulations also increased during the Terminal Classic period. 
These findings suggest a possible exacerbation of the mercury related 
exposure for city residents during this time, a subject of research that 
needs to be explored further from the perspective of human remains at 
the site and elsewhere in the Maya area.
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Appendix A 

Age/depth profile: Aguadas 2, 3 and P2C1 AMS radiocarbon dating and ceramic chronologies. Ceramic chronologies established by PAU.
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Table A.1 
Aguada 3, AMS radiocarbon dating and ceramic (PAU) chronologies.

Depth (cm) AMS Radiocarbon dating Ceramic phases

10 ​ Terminal Classic (late phase)
20 ​ Terminal Classic (late phase)
30 774–777 CE 1.3 %; 783–881 CE 94.2 % Terminal Classic (late phase)
40 ​ Terminal Classic (late phase)
50 ​ Terminal Classic (early phase), mixed
60 ​ Terminal Classic
70 ​ Late Classic, mixed
80 ​ Late Classic, mixed with some Late Preclassic sherds
90 ​ Late Classic, mixed with some Late Preclassic sherds
100 ​ Late Classic, mixed with some Late Preclassic sherds
110 660–706 CE 46.7 %; 737–775 CE 48.7 % Late Classic mixed with some Late Preclassic sherds
120 ​ Middle Preclassic

Table A.2 
P2C1, AMS radiocarbon dating and ceramic (PAU) chronologies.

Depth (cm) AMS Radiocarbon dating Ceramic phases

10 ​ Terminal Classic (late phase)
20 ​ Terminal Classic (late phase)
30 1302–1368 CE 75.0 %; 1381–1398 CE 20.4 % Terminal Classic (late phase)
40 ​ Terminal Classic (late phase)
50 ​ Terminal Classic (early phase)
60 ​ Terminal Classic
70 ​ Terminal Classic
80 ​ Terminal Classic (early phase)
90 365–341 BCE 13.3 %; 

323–200 BCE 82,.%
Terminal Classic (with small quantities of Late Preclassic sherds)

100 690–695 CE 1.0 %; 
701-741AD 32.7 %; 
771–779 CE 3.3 %; 
786–835 CE 50.4 %; 
850–876 CE 8.1 %

Mixed Late Classic, Early Classic, and Late Preclassic sherds

110 ​ Terminal Preclassic, mixed with some Early Classic sherds
120 ​ Mixed Late Classic, Early Classic, and Late Preclassic sherds
130 ​ Late Preclassic mixed with small quantities of Early Classic period sherds
140 352–287 BCE 47.9 %; 

228–218 BCE 1.5 %; 
211–155 BCE 46.0 %

Late Preclassic mixed with small quantities of Classic period sherds

150 ​ Early Classic, mixed with 1 Late Classic sherd

Table A.3 
Aguada 2, AMS radiocarbon dating and ceramic (PAU) chronologies.

Depth (cm) AMS Radiocarbon dating Ceramic phases

10 ​ Terminal Classic, (late phase)
20 ​ Terminal Classic (late phase)
30 ​ Terminal Classic (late phase)
40 ​ Terminal Classic (early phase), mixed
50 665–709 CE 42.9 %; 723–775 CE 52.5 % Terminal Classic (early phase), mixed
60 ​ Late Classic (B’aaluum), mixed
70 ​ Late Classic (B’aaluum)
80 ​ Late Classic (B’aaluum)
90 ​ Late Classic (Kan), mixed
100 ​ Late Classic (Kan), mixed
110 ​ Late Classic (Kan), mixed
120 ​ Late Classic (Kan), mixed
130 ​ Late Classic (Kan), mixed
140 ​ Early Classic, mixed
150 422–539 CE 95.4 % Early Classic, mixed
160 ​ Early Classic, mixed
170 ​ Early Classic, mixed
180 ​ Early Classic, small amounts of Late Preclassic
190 ​ Early Classic and Late Preclassic mixed
200 ​ Early Classic and Late Preclassic mixed
210 ​ Early Classic and Late Preclassic mixed
220 72–210 CE 95.4 % Early Classic and Late Preclassic mixed
230 ​ Terminal Preclassic
240 ​ Terminal Preclassic

(continued on next page)
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Table A.3 (continued )

Depth (cm) AMS Radiocarbon dating Ceramic phases

250 ​ Terminal Preclassic
260 ​ Late Preclassic
270 ​ Late Preclassic
280 ​ Middle Preclassic (‘Ayin)
290 ​ Middle Preclassic (‘Ayin)
300 165–47 BC 95.4 % Middle Preclassic (‘Ayin)
310 ​ Middle Preclassic (‘Ayin and pre-‘Ayin), mixed
320 ​ Middle Preclassic (‘Ayin and pre-‘Ayin), mixed
330 ​ Middle Preclassic (‘Ayin and pre-‘Ayin), mixed
340 355–281 BCE 52.5 %; 231–157 BCE 43.0 % Middle Preclassic (pre-‘Ayin), mixed
350 ​ Middle Preclassic (‘Ayin and pre-‘Ayin)

Table A.4 
Complementary tracking radiocarbon information for Aguada 2, 3 and P2C1: University of Ottawa Lab sample ID, location & depth, material 
tested, and 14C yr BP.

Lab ID tracking Location & depth Material 14C yr. BP 
(non-calibrated)

UOC-23721 Aguada 3, 30 cm Charcoal 1220 ± 20
UOC-20025 Aguada 3, 110 cm Charcoal 1309 ± 18
UOC-20026 Aguada 2, 50 cm Charcoal 1295 ± 18
UOC-20027 Aguada 2, 150 cm Charcoal 1599 ± 18
UOC-20029 Aguada 2, 220 cm Charcoal 1903 ± 18
UOC-23722 Aguada 2, 300 cm Charcoal 2100 ± 20
UOC-20028 Aguada 2, 340 cm Clay like sediments mixed with charcoal 2172 ± 19
UOC-23717 Piscina 2, 30 cm Charcoal 615 ± 20
UOC-23719 Piscina 2, 90 cm Charcoal 2220 ± 20
UOC-23718 Piscina 2, 100 cm Charcoal 1240 ± 20
UOC-23720 Piscina 2, 140 cm Charcoal 2170 ± 20

Appendix B 

QA/QC data from Aguadas 2 and 3 and P2C1. Randomly selected samples were run as triplicates and submitted to parallel laboratory preparation 
and analyses. We report here on two conservative global error calculations.

Table B.1 
QA/QC samples locations, depth, and mercury concentrations of Ucanal reservoirs.

Location Depth (cm) Triplicates Hg (μg/g)

Aguada 2 50 Ta 1.06
Aguada 2 50 Tb 1.08
Aguada 2 50 Tc 1.93
Aguada 2 140 Ta 0.53
Aguada 2 140 Tb 0.58
Aguada 2 140 Tc 0.49
Aguada 2 220 Ta 0.58
Aguada 2 220 Tb 0.59
Aguada 2 220 Tc 0.92
Aguada 2 300 Ta 0.92
Aguada 2 300 Tb 0.87
Aguada 2 300 Tc 0.65
Aguada 3 30 Ta 15.98
Aguada 3 30 Tb 15.10
Aguada 3 30 Tc 19.64
Aguada 3 80 Ta 0.16
Aguada 3 80 Tb 0.18
Aguada 3 80 Tc 0.13
Piscina 2 60 Ta 3.13
Piscina 2 60 Tb 3.29
Piscina 2 60 Tc 3.39
Piscina 2 140 Ta 0.87
Piscina 2 140 Tb 1.23
Piscina 2 140 Tc 1.04
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Table B.2 
Global error of 14.5 % Calculations based on the mean of variation coefficients.

Location Ta (μg/g) Tb (μg/g) Tc (μg/g) Mean (μg/g) SD (μg/g) VC

Aguada 3, 30 cm 15.98 15.10 19.64 16.907 1.966 0.116
Aguada 3, 80 cm 0.16 0.18 0.13 0.157 0.021 0.131
Aguada 2, 50 cm 1.06 1.08 1..93 1.357 0.405 0.299
Aguada 2, 140 cm 0.53 0.58 0.49 0.533 0.037 0.069
Aguada 2, 220 cm 0.58 0.59 0.92 0.697 0.158 0.227
Aguada 2, 300 cm 0.92 0.87 0.65 0.813 0.117 0.144
Piscina 2, 60 cm 3.13 3.29 3.39 3.270 0.107 0.033
Piscina 2, 140 cm 0.87 1.23 1.04 1.047 0.147 0.140

Table B.3 
Global error of 14.3 %) Calculations based on the mean standard deviation of our QA/QC samples (0.370 μg g− 1) divided by the mean of data set concentrations 
(2.59μg g− 1).

Location Ta (μg/g) Tb (μg/g) Tc (μg/g) Mean (μg/g) SD ((μg/g))

Aguada 3, 30 cm 15.98 15.10 19.64 16.907 1.966
Aguada 3, 80 cm 0.16 0.18 0.13 0.157 0.021
Aguada 2, 50 cm 1.06 1.,08 1.93 1.357 0.405
Aguada 2, 140 cm 0.53 0.58 0.49 0.533 0.037
Aguada 2, 220 cm 0.58 0.59 0.92 0.697 0.158
Aguada 2, 300 cm 0.92 0.87 0.65 0.813 0.117
Piscina 2, 60 cm 3.13 3.29 3.39 3.270 0.107
Piscina 2, 140 cm 0.87 1.23 1.04 1.047 0.147

Appendix C 

Mercury concentrations with depth for Aguadas 2 and 3, P2C1, and background samples collected throughout Ucanal city core.
Coarse fraction profile for P2C1 and soil pH measurements.

Table C1 
Aguada 2 mercury concentrations with 
depth. (for QA/QC samples, average of the 
triplicates is used).

Depth (cm) Hg (μg/g)

10 3.80
20 4.45
30 3.99
40 1.81
50 1.36
60 0.87
70 0.81
80 0.70
90 0.77
100 0.84
110 0.55
120 0.53
130 0.49
140 0.53
150 0.68
160 1.12
170 1.55
180 0.95
190 0.64
200 1.32
210 0.56
220 0.70
230 0.48
240 0.69
250 1.21
260 0.83
270 0.62
280 0.72
290 0.72
300 0.81
310 0.92
320 1.37
330 1.21
340 1.35
350 0.73
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Table C.2 
Aguada 3 mercury concentrations with 
depth. (for QA/QC samples, average of 
the triplicates is used).

Depth Hg (μg/g)

10 14.25
20 15.07
30 16.91
40 13.19
50 6.76
60 2.36
70 1.07
80 0.16
90 0.01
100 0.54
110 0.20
120 0.16

Table C.3 
P2C1 mercury concentrations with 
depth. (for QA/QC samples, average of 
the triplicates is used).

Depth Hg (μg/g)

10 3.11
20 2.93
30 3.69
40 3.34
50 3.06
60 3.13
70 4.12
80 1.97
90 2.00
100 1.54
110 0.96
120 1.04
130 0.82
140 0.87
150 1.03

Table C.4 
Background mercury samples from within Ucanal city core. For sample locations please refer to Fig. 2.

Sample ID Hg (μg/g) Period Context

JT004 3.02 10 cm from ground surface,Terminal Classic Small depression near Group 785
JT005 3.78 10 cm from ground surface,Terminal Classic Residential Group 575
JT006 0.23 10 cm from ground surface,Terminal Classic Clearing zone away from architecture
UCA20B-7-3-2074 6.44 Plaza fillLate Terminal Classic Plaza area in font of Stela 29, Plaza K
UCA2F-19-3-2568 4.97 Midden,Terminal Classic Ballcourt 1, Plaza A

Table C.5 
P2C1 coarse fraction with depth.

Depth (cm) Coarse portion 
% > 2.36 mm

10 65.1
20 65.9
30 49.9
40 43.9
50 60.4
60 20.9
70 13.9
80 19.6
90 21.2
100 57.1

(continued on next page)
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Table C.5 (continued )

Depth (cm) Coarse portion 
% > 2.36 mm

110 56.4
120 49.7
130 67.8
140 48.2
150 48.1

Table C.6 
Soil pH values from reservoirs and surrounding 
environments.

Location & depth pH

Aguada 3, 30 cm 7.28
Aguada 3, 80 cm 7.87
Aguada 2, 50 cm 7.61
Aguada 2, 140 cm 7.51
Aguada 2, 220 cm 7.65
Aguada 2, 300 cm 7.56
Piscina 2 of Canal 1, 60 cm 7.43
Piscina 2 of Canal 1, 140 cm 7.45
JT006, 10 cm 7.32
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